11/18/24, 5:23 PM C# | Classes | Codecademy

codejcademy (Q Logln m =

C# Concepts »

Docs / C# / Classes

Classes

|
Published Oct 31, 2023

Contribute to Docs =

In C#, a class serves as a blueprint or template for creating objects. It plays a fundamental role
in defining the structure, behavior, and attributes of these objects. A class can be thought of as a
user-defined data type that encapsulates both data (attributes) and the actions (methods) that
are applied to that data.

Syntax for Declaring Classes

To declare a class in C#, use the class keyword, followed by the class name. Class names should
follow C# naming conventions (typically using PascalCase). The class definition is enclosed within
curly braces {}.

public class MyClass {

'/ Fields, properties, and methods go here

Properties and Methods

 Properties : Properties are used to define the attributes or data members of a class. They
are defined within the class and provide access to the class’s internal state.

https://www.codecademy.com/resources/docs/c-sharp/classes 1/6

11/18/24, 5:23 PM C# | Classes | Codecademy
« Methods : Methods are functions defined within the class that perform actions or
operations. They can modify the class’s state or provide functionality.

Access Modifiers

C# provides access modifiers to control the visibility and accessibility of class members.

Common access modifiers include:

public : Members are accessible from any code.

 private : Members are only accessible within the class.

protected : Members are accessible within the class and derived classes.

internal : Members are accessible within the same assembly (a group of related classes in

the same project).
« protected internal : Members are accessible within the same assembly and derived classes.
« private protected : Members are accessible only from derived classes within the current
assembly. This access modifier has been available since C# 7.2 and later.

Example

Here is a simple example featuring a class with properties and methods. By employing various
access modifiers in C#, this example illustrates the use of public methods, such as GetBalance , to
access private properties like the current balance . Meanwhile, it showcases that private methods
like PerformAudit() are inaccessible from external code.

using System;

public class Program {
public static void Main () {
an initial ba

BankAccount account new BankAccount (1000) ;

// Use the GetBalance method to get the current balance.

double currentBalance = account.GetBalance () ;

Console.WritelLine ("Current Balance: $" + currentBalance) ;

https://www.codecademy.com/resources/docs/c-sharp/classes 2/6

11/18/24, 5:23 PM C# | Classes | Codecademy

public class BankAccount {
// Keeping track of current balance.

private double balance;

// Constructor
public BankAccount (double initialAmount)

balance = initialAmount;

// Accessor method for balance.
public double GetBalance () {

return balance;

// Private method to perform a transaction audit.

private void PerformAudit () {
// In a real application, this method would perform auditing.
// For this example, we'll just print a message.

Console.WriteLine ("Audit complete.");

Static Classes

Static classes are defined using the static keyword and exclusively contain static members, such
as methods, properties, and fields. Unlike regular classes, static classes cannot be instantiated
with the new keyword. Instead, their members are accessed using the class name itself. These
classes are commonly used for utility functions or to group related functionality.

Partial classes

Partial classes in C# enable class definitions to be split across multiple files. Each part of the
class is defined in a separate file and combined at compile time to create a single class. This is

https://www.codecademy.com/resources/docs/c-sharp/classes

11/18/24, 5:23 PM C# | Classes | Codecademy
valuable for scenarios where a class becomes too large or complex, or when multiple
developers need to work on different aspects of the class simultaneously.

partial class Calculator partial class Calculator

{

{
public int Subtract(int a, int b) public int Add(int a, int b)
{ {

returna-b; return a + b;
} }
} }

Compiles to Single Class File.

publicclass Calculator

{

public int Subtract(int a, int b)

{

returna-b;

}
public int Add(int a, int b)

{

returna + b;

}

In the image above, the Calculator class is depicted as a partial class structure, allowing
independent development of class components. In the code below, the application’s entry
point, the Main method, creates an instance of the Calculator class and utilizes its methods for
addition and subtraction operations.

using System;

class Program {

https://www.codecademy.com/resources/docs/c-sharp/classes 4/6

11/18/24, 5:23 PM C# | Classes | Codecademy

static void Main () {

Calculator calculator = new Calculator();

int resultl = calculator.Add (5, 3);

int result?2 = calculator.Subtract (10, 4);

Console.WriteLine ("Addition: " + resultl); // Output: Addition: 8

Console.WritelLine ("Subtraction: " + result2); // Output: Subtraction:

All contributors

Anonymous contributor

Contribute to Docs
« Learn more about how to get involved.
- Edit this page on GitHub to fix an error or make an improvement.

« Submit feedback to let us know how we can improve Docs.

Learn C# on Codecademy

Computer Science

Looking for an introduction to the theory behind programming? Master Python while learning data
structures, algorithms, and more!

di] Beginner Friendly 75 hours

)A

https://www.codecademy.com/resources/docs/c-sharp/classes 5/6

11/18/24, 5:23 PM C# | Classes | Codecademy

-

Free course

Learn C#
Learn Microsoft's popular C# programming language, used to make websites, mobile apps, video games,

VR, and more.

di] Beginner Friendly 23 hours

\

]\ Back to top

https://www.codecademy.com/resources/docs/c-sharp/classes

6/6

